If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+4y-4=0
a = 4; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·4·(-4)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{5}}{2*4}=\frac{-4-4\sqrt{5}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{5}}{2*4}=\frac{-4+4\sqrt{5}}{8} $
| 5(2x+6)=-4(-5-2x)+3× | | 2x+5+12x+17x-14=180 | | 4(4x-7)-8=4(x-2)+44 | | 3(-5)+y=3 | | 7x-1+13x-43=180 | | 3•x+3=30 | | −7w−56=-35 | | 2(x+1)=6(x-3)-8 | | N+9x-4=-16 | | 6^(2x-1)=18 | | 84=2x^2+6x+4 | | 7x+6-6x=1 | | 4^6x-7=256 | | X=1/6×18x+4 | | 4(w-7=-48 | | 8x+(x+27)=180 | | X=1/6;18x+4 | | 2(s+6)=5(s+12 | | 73x^2-81x=0 | | 5x+6=-4+5x+10 | | j=22-24 | | 2x^+16x-10=9 | | 5x^2=192 | | 4x-12-3x+15x-3=25 | | 24x-48=180 | | 2×m+2=6 | | (2x-30)+x+50=360 | | 2^(3x-1)=12/5 | | 177=21x-9 | | 1/6x+5/3=-1/2 | | 8(d-9+7)=-13 | | -4.905t^2+25.54t=0 |